129 research outputs found

    The highly conserved methionine of subunit I of the heme-copper oxidases is not at the heme-copper dinuclear center: Mutagenesis of M110 in subunit I of cytochrome bo3-type ubiquinol oxidase from Escherichia coli

    Get PDF
    AbstractA common feature within the heme-copper oxidase superfamily is the dinuclear heme-copper center. Analysis via extended X-ray absorption fine structure (EXAFS) has led to the proposal that sulfur may be bound to CUB, a component of the dinuclear center, and a highly conserved methionine (M110 in the E. coli oxidase) in subunit I has been proposed as the ligand. Recent models of subunit I, however, suggest that this residue is unlikely to be near CUB, but is predicted to be near the low spin heme component of the heme-copper oxidases. In this paper, the role of M110 is examined by spectroscopic analyses of site-directed mutants of the bo3-type oxidase from Escherichia coli. The results show that M110 is a non-essential residue and suggest that it is probably not near the heme-copper dinuclear center

    Critical Hysteresis from Random Anisotropy

    Get PDF
    Critical hysteresis in ferromagnets is investigated through a NN-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N)\mathcal{O}(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.Comment: four pages, revtex4; minor corrections in the text and typos corrected (published version

    Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides.

    No full text
    It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS

    Instrumental barriers in biological Fourier transform infrared spectroscopy

    No full text
    • …
    corecore